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consists of a heterogeneous suite of machines, high-speed in-

To exploit a heterogeneous computing (HC) environment, an terconnections, interfaces, operating systems, communication
application task may be decomposed into subtasks that have protocols, and programming environments provides a variety
data dependencies. Subtask matching and scheduling consistspf architectural capabilities, which can be orchestrated to per-
of assigning subtasks to machines, ordering subtask executionfOrm an application that has diverse execution requirements
for each machine, and ordering intermachine data transfers. [Fre89, Frs93, KhP93, SiA96, Sun92]. In the HC environ-
The goal is to achieve the minimal completion time for the ment c'onsiderc'ad here ,an appl}cation task can be decomposed
task. A heuristic approach based on a genetic algorithm is . ’ . .
developed to do matching and scheduling in HC environments. into subtasks, yvhere ea(?h subtask !S computa.tlonally homoge-
It is assumed that the matcher/scheduler is in control of a Neous (well suited to a single machine), and different subtasks
dedicated HC suite of machines. The characteristics of this Mmay have different machine architectural requirements. These
genetic-algorithm-based approach include: separation of the subtasks can have data dependences among them. Once the
matching and the scheduling representations, independence of application task is decomposed into subtasks, the following
the chromosome structure from the details of the communication decisions have to be madmatching i.e., assigning subtasks
subsystem, and consideration of overlap among all computations to machines, andchedulingi.e., ordering subtask execution
and communications that obey subtask precedence constraints. for gach machine and ordering intermachine data transfers. In

It is applicable to the static scheduling of production jobs and this context, the goal of HC is to achieve the minincaim-
can be readily used to collectively schedule a set of tasks that are '

. . rrJIetion time i.e., the minimal overall execution time of the
decomposed into subtasks. Some parameters and the selectio

scheme of the genetic algorithm were chosen experimentally to aplpl_lcatlolrr l:ask n Lhe macr:]hlne SUILe.' d scheduli b
achieve the best performance. Extensive simulation tests were |t 1S Well known that such a matching and scheduling prob-

conducted. For small-sized problems (e.g., a small number of lem is in general NP-complete [Fer89]. A number of ap-
subtasks and a small number of machines), exhaustive searchesProaches to different aspects of this problem have been pro-
were used to verify that this genetic-algorithm-based approach posed (e.g., [EsS94, Fre89, IlvO95, NaY94, TaA95, WaA94]).
found the optimal solutions. Simulation results for larger-sized Different from the above approaches, this paper proposes a
problems showed that this genetic-algorithm-based approach genetic-algorithm-based approach for solving the problem.
outperformed two nonevolutionary heuristics and a random  Genetic algorithms for subtask scheduling in a collection of
search.  © 1997 Academic Press homogeneous processors have been considered (e.g., [AhD96,
BeS94, HoA94]). Performing matching and scheduling for a
suite of heterogeneous machines, however, requires a very
1. INTRODUCTION different genetic algorithm structure.
In [IvO95], a nonevolutionary heuristic based on level
Different portions of an application task often require difscheduling [ChL88, MuC69] is presented to find a suboptimal
ferent types of computation. In general, it is impossible for @atching and concurrent scheduling decision. That approach
single machine architecture with its associated Compiler, Ojg- Compared to the performance of the evo|utionary genetic-
erating system, and programming tools to satisfy all the comtgorithm-based approach proposed in this paper.
putational requirements in such an application equally well. This paper proposes a genetic-algorithm-based approach for
However, aheterogeneous computirgiC) environment that solving the matching and concurrent scheduling problem in
HC systems. It decides the subtask to machine assignments,
"This research was supported in part by NRaD under Subcontract 24ers the execution of the subtasks assigned to each machine,
950001-70 and by the DARPA/ITO Quorum Program under NPS Subcontract
N62271-97-M-0900. and schedules the data transfers among subtasks. The charac-
2E-mail: {lwang,hj,maciejew}@ecn.purdue.edu. teristics of this approach include: separation of the matching
3E-mail: vwani@ee.ucla.edu. and the scheduling representations, independence of the chro-
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TASK MATCHING AND SCHEDULING 9

mosome structure from the details of the communication sub-
system, and consideration of overlap among all computations
and communications that obey subtask precedence constraints.
The computation and communication overlap is limited only
by intersubtask data dependencies and machine/network avail-
ability. This genetic-algorithm-based approach can be applied
to performing the matching and scheduling in a variety of HC
systems. It is applicable to the static scheduling of production
jobs and can be readily used to collectively schedule a set of , : gdi,
tasks that are decomposed into subtasks.

The organization of this paper is as follows. The matching
and scheduling problem is defined in Section 2. Section 3
briefly describes genetic algorithms and gives the outline of the FIG. 1. An example DAG.
genetic-algorithm-based approach. In Section 4, the proposed ] ]
representation of matching and scheduling decisions witHiymber of subtasks in the s8tands; to be theith subtask.
the genetic framework is presented. Section 5 discusses hbdenS = {s;, 0 < i < [3}. An HC environment consists of a
to generate the initial population of possible solutions used B¢t of machines/. Define M| to be the number of machines
the genetic algorithm. The selection mechanism is discussedrrihe setM andm; to be thejth machine. TheM = {m;, O
Section 6. Sections 7 and 8 define the crossover and mutatioh< [M[}. The estimated expected execution time of subtask
operators, respectively, used to construct new generationsSopn machinem; is T;, where 0< i < |§ and 0< j < |M|.
populations. Section 9 gives the method for evaluating tAée global data itemg(gdis), i.e., data items that need to be
quality of a solution and the experimental results are showntiansferred between subtasks, form a GeDefine (5| to be
Section 10. Some related work is viewed and compared withe number of items in the s& and gdj to be thekth global
our approach in Section 11. Finally, Section 12 discusses so#éi&a item. TherG = {gdi,, 0 < k < |G|}.

gdig

future research directions. It is assumed that for each global data item, there is a
single subtask that produces produce) and there are some
2. PROBLEM DEFINITION subtasks that need this data itegpifsumers The task is

. i resented by a directed acyclic grapi\G). Each edge goes
There are many open research problems in the field of F!%Dm a producer to a consumer and is labeled by the global

[Srj(l)pt\)?fr]ﬁ Tgs'zoﬁti.ggg z)t;:ctjst %2;2? gﬁcg':gn?:%fgmegug?%l}a item that is transferred. Figure 1 shows an example DAG.
P ' umpt u omp v he following further assumptions are made for the prob-
HC system must be made. Assumptions such as those be

toicall de b ichi d scheduli h W. One is the exclusive use of the HC environment for the
are typically made by maiching and scheduling researchgls,; »ion. The genetic-algorithm-based matcher/scheduler is

(e.g., [ShW96, SiY96]). in control of the HC machine suite. Another is nonpreemptive

It is assumed that the application task is written in some : : )
machine-independent language (e.g., [WeWo4)). It is alégbtaSk execution. Also, all input data items of a subtask must

assumed that an application task is decomposed into multi %recewgd befpre |ts'execut|0r'1 can begin, gnd none of its out-
subtasks and the data dependencies among them are knl _d_ata items is avallable_ _untll t_he executlon_ of this sub?agk
and are represented by a directed acyclic graph. If intermachifdinished. If a data conditional is based on input data, it is
data transfers are data dependent, then some set of expe@fSymed to be contained inside a subtask. A loop that uses an
data transfers must be assumed. The estimated expedi®yt data item to determine one or both of its bounds is also
execution time for each subtask on each machine is assurdégumed to be contained inside a subtask. These restrictions
to be knowna priori. The assumption of the availability ofhelp make the matching and scheduling problem more man-
expected subtask execution time for each type of machineageable and solving this problem under these assumptions is a
typically made for the current state-of-the-art in HC systensggnificant step forward for solving the general matching and
when studying the matching and scheduling problem (e.ggheduling problem.
[Fre94, GhY93, Shw96, SiY96]). Finding the estimated
expected execution times for subtasks is another research 3. GENETIC ALGORITHMS
problem, which is outside the scope of this paper. Approaches ) ] o o
for doing this estimation based on task profiling and analytical Genetic algorithms(GAg are a promising heuristic ap-
benchmarking are surveyed in [SiA96]. The HC system Ryoach to finding near-optimal solutions in large search spaces
assumed to have operating system support for executing eHeav91, Gol89, Hol75]. There are a great variety of ap-
subtask on the machine it is assigned and for performimgoaches to GAs; many are surveyed in [SrP94, RiT94]. The
intermachine data transfers as scheduled by this genefidlowing is a brief overview of GAs to provide background
algorithm-based approach. for the description of the proposed approach.

In the type of HC system considered here, an applicationThe first step necessary to employ a GA is to encode any
task is decomposed into a set of subtaSkdefine § to be the possible solution to the optimization problem as a set of strings
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(chromosome Each chromosome represents one solution Eor other parameters, such as the probability of performing a
the problem, and a set of chromosomes is referred to asnatation operation, experiments were conducted (Section 10).
population The next step is to derive an initial population.

A random set of chromosomes is often used as the initial 4. CHROMOSOME REPRESENTATION

population. Some specified chromosomes can also be included.

This initial population is the first generation from which the [N this GA-based approach, each chromosome consists of
evolution starts. two parts: the matching string and the scheduling string. Let

The third step is tevaluatethe quality of each chromosome Mat be thematching string which is a vector of length§,
Each chromosome is associated witfitaess valugwhich is SUch that matf = j, where O< i < |§ and 0<j < [M[; i.e.,
in this case the completion time of the solution (matching artfPtasks; is assigned to machine;.
scheduling) represented by this chromosome (i.e., the expectedn® scheduling strings a topological sort [CoL92] of the

execution time of the application task if the matching ang~C: 1-€., a total ordering of the nodes (subtasks) in the DAG

scheduling specified by this chromosome were used). Thus,ti t obgys th? preceden_ce constraints. Defiado be the
eduling string, which is a vector of lengtfl, |such that

this research a smaller fitness value represents a better solutfi — i wh 0<i Kk < q . |
The objective of the GA search is to find a chromosome that ) = 1, where O=s 1, S, and eachs; appears only
e in the vector, i.e., subtask is the kth subtask in the

has the optimal (smallest) fitn value. Th lection pro . ) o . e
op (s est) fitness € selection proc cheduling string. Because it is a topological sort, iKs& a

is the next step. In this step, each chromosome is eliminafd . : ;
. . . . . <
or duplicated (one or more times) based on its relative quali onsumer of a global data item produced byjgsihen; < k.

The population size is typically kept constant. he scheduling string gives an ordering of the subtasks that is

o . used by the evaluation step.
Selection is followed by therossovestep. With some prob- Then in this GA-based approach, a chromosome is repre-

ability, some pairs of chromosomes are selected from the cyr . | by a two-tuplémat, ss. Thus, a chromosome repre-
rent population and some of their corresponding compone L '

h dtof id ch hich Whts the subtask-to-machine assignments (matching) and the
are exchanged to form two valid chromosomes, which may gfq.\tion ordering of the subtasks assigned to the same ma-

may not_ a'“?ady be in thg current popula‘uon. After CrossoV@hine. The scheduling of the global data item transfers and the
each string in the population may bedtatedwith some prob- o|ative ordering of subtasks assigned to different machines
ability. The mutation process transforms a chromosome iNQ@e getermined by the evaluation step. Figure 3 illustrates two

another valid one that may or may not already be in the CWifrerent chromosomes for the DAG in Fig. 1, @ E 6, M|
rent population. The new population is then evaluated. If theg 5ng G| = 5.

stopping criteria have not been met, the new population goes
through another cycle (iteration) of selection, crossover, mu-
tation, and evaluation. These cycles continue until one of the
stopping criteria is met.

In summary, the following are the steps that are taken to
implement a GA for a given optimization problem: (1) an
encoding, (2) an initial population, (3) an evaluation using a
particular fitness function, (4) a selection mechanism, (5) a
crossover mechanism, (6) a mutation mechanism, and (7) ¢
set of stopping criteria. These steps of a typical GA are shown
in Fig. 2.

Details of the steps for the implementation of the GA-based
heuristic for HC will be discussed in the following sections.
For some parameters of this GA, such as population size,
values were selected based on information in the literature.

mat1 S$§ 4

GA_matching_scheduling () {
initial population generation;

evaluation;
while (stopping criteria not met) {
selection;
crossover;
mutation;
evaluation;
}

output the best solution found;

FIG. 2. The steps in a typical GA. FIG. 3. Two chromosomes from the DAG in Fig. 1.
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5. INITIAL POPULATION GENERATION The selection step generatBsrandom numbers, ranging
o ) ] ~ from zero to one. Each number falls in a sector on the roulette
In the initial population generation step, a predefinediheel and a copy of the owner chromosome of this sector is
number of chromosomes are generated, the collection of whigR,ded in the next generation. Because a better solution has
form the initial population. When generating a chromosomg, |arger sector angle than that of a worse solution, there is
a new matching string is obtained by randomly assigning eaghigher probability that (one or more) copies of this better
subtask to a machine. To form a scheduling string, the DAG,|ytion will be included in the next generation. In this way,
is first topologically sorted to form a basis scheduling stringe population for the next generation is determined. Thus, the

Then, for each chromosome in the initial population, this bas‘_i,% ulation size is alwayB, and it is possible to have multiple
3&9§ies of the same chromosome.

string is mutated a random number of times (between one
the number of subtasks) using the scheduling string mutationyjternatively, avalue-based roulette wheel selection scheme
operator (defined in Section 8) to generate the ss vector (Whichh pe used to implement a proportionate selection [SrP94].
is a valid topological sort of the given DAG). Furthermore, if gt f, pe the fitness value of ttigh chromosome antl,, be the

is common in GA applications to incorporate solutions froryerage fithess value of the current population. In this selection
some nonevolutionary heuristics into the initial populationycheme, théth chromosome (& i < P) is allocated a sector
Which may reduce thg time needed for finding a sat.isfactog)y1 the roulette wheel, the angle of whiok, is proportional
solution [Dav91]. In this GA-based approach, along with thosg f_ f; (assuming that the best chromosome has the smallest
chromosomes representing randomly generated solutions, fiifess value, which is the case for this research). The most
initial population also includes a chromosome that represenisyropriate selection scheme for this research was chosen
the solution from a nonevolutionary baseline heuristic. Detailserimentally. Details on the experiments can be found in
of this heuristic will be discussed in Section 10. Section 10 and [Wan97].

Each newly generated chromosome is checked against thosenis GA-based approach also incorporastiism [Rud94].
previously generated. If a new chromosome is identical to apy the end of each iteration, the best chromosome is always
of the existing ones, it is discarded and the process of chromg@mpared with an elite chromosome, a copy of which is stored
some generation is repeated until a unique new chromososeparately from the population. If the best chromosome is
is obtained. The reason why identical chromosomes are notlatter than the elite chromosome, a copy of it becomes the
lowed in the initial generation is that they could possibly drivelite chromosome. If the best chromosome is not as good as
the whole population to a prematurenvergencei.e., the state the elite chromosome, a copy of the elite chromosome replaces
where all chromosomes in a population have the same fitnéisg worst chromosome in the population. Elitism is important
value. It can be shown that for this GA-based approach, thdrecause it guarantees that the quality of the best solutions
is a nonzero probability that a chromosome can be generatednd over generations is monotonically increasing.
to represent any possible solution to the matching and sched-
uling problem using the crossover and the mutation operators. 7. CROSSOVER OPERATORS
The crossover and the mutation operators will be discussqu

; : . ifferent crossover operators are developed for scheduling
later in Sections 7 and 8, respectively.

strings and matching strings. The crossover operator for
the scheduling strings randomly chooses some pairs of the
scheduling strings. For each pair, it randomly generates a cut-

In this step, the chromosomes in the population are fi@? point, which divides the scheduling strings of the pair into
ordered (ranked) by their fitness values from the best ap and bottom parts. Then, the subtasks in each bottom part

the worst. Those having the same fitness value are rank&d rgordered. T_he new_o_rdering of the subtasks ir_‘ one bottom
arbitrarily.among themselves. Then rank-based roulette part is the relative positions of these subtasks in the other

wheel selection schensan be used to implement the selectioo“gmal scheduling string in the pair, thus guaranteeing that the

: wly generated scheduling strings are valid schedules. Figure
step [Hol75, S_rP94]. In the rank-based selection scheme, €3CGemonstrates such a scheduling string crossover process.
chromosome is allocated a sector on a roulette wheel.

P d h lati . q h e of th Le%he crossover operator for the matching strings randomly
enotﬁ the p()jopu ﬁ:ﬁn S'Eedamr? enote t eTﬁngOeho tke hooses some pairs of the matching strings. For each pair, it
sector allocated to t ranked chromosome. The Oth ranke andomly generates a cut-off point to divide both matching

chromosome is the fittest and has the sector with the Iarggmngs of the pair into two parts. Then the machine assign-
angleA,; whereas theR — 1)th ranked chromosome is the Ieas;hents of the bottom parts are exchanged

fit and has the sector with the smallest anfjje,. The ratio of 0 ohapility for performing crossovers was determined

the sector angles between two adjacently ranked Chromosorﬂﬁsexperimentation This is discussed in Section 10
is a constanR = A/A,,,, where 0< i <P - 1. If the 360 degrees ' '

of the wheel are normalized to one, then 8. MUTATION OPERATORS
A =RP 1 x1-R/1-RP),

6. SELECTION

Different mutation operators are developed for scheduling
whereR>1,0<i <P, and 0 <A, < 1. strings and matching strings. The scheduling string mutation
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9. EVALUATION

The final step of a GA iteration is the evaluation of the
fitness value of each chromosome. In this GA-based approach,
the chromosome structure is independent of any particular
communication subsystem. Only the evaluation step needs
the communication characteristics of the given HC system
to schedule the data transfers. To test the effectiveness of
this GA-based approach, an example communication system
was chosen. This GA-based approach can be used with
any communication system that obeys the assumptions in
Section 2.

To demonstrate the evaluation process, an example commu-
nication subsystem, which is modeled after a HiPPI LAN with
a central crossbar switch [HoT89, ToR93], is assumed to con-
nect a suite of machines. Each machine in the HC suite has

FIG. 4. A scheduling string crossover example. one input data link and one output data link. All these links
are connected to a central crossbar switch. Figure 6 shows
operator randomly chooses some scheduling strings. Then dor HC system consisting of four machines that are intercon-
each chosen scheduling string, it randomly selects a victimected by such a crossbar switch. If a subtask needs a global
subtask. Thevalid range of the victim subtask is the set ofdata item that is produced or consumed earlier by a different
the positions in the scheduling string at which this victilsubtask on the same machine, the communication time for this
subtask can be placed without violating any data dependerni@yn is zero. Otherwise, the communication time is obtained
constraints. Specifically, the valid range is after all soureg; dividing the size of the global data item by the smaller
subtasks of the victim subtask and before any destinatigandwidth of the output link of the source machine and the
subtask of the victim subtask. After a victim subtask is chosqﬂput link of the destination machine. In this research, it is
it is moved randomly to another position in the schedulingssmed that for a given machine, the bandwidths of the in-
string within its valid range. Figure 5 shows an example Qft jink and the output link are equal to each other. It is also
this mutation process. assumed that the crossbar switch has a higher bandwidth than

The matching string mutation operator randomly choosqa,?at of each link. The communication latency between any pair

some matching strings. On each' Chos‘?” matching Strlngbftmachines is assumed to be the same. Data transfers are nei-
randomly selects a subtask/machine pair. Then the machjpe

X o {Fer preemptive nor multiplexed. Once a data transfer path is
assignment for the selected pair is changed randomly 1o, " . . S . .
: established, it cannot be relinquished until the data item (e.g.,
another machine. diy) scheduled to be transferred over this path is received b
The probability for performing mutations was determineq1 |k)dsc 1eduled fo :’ ranl\j elr_rel gver IS pfa 'S reciwe y
by experimentation. This is discussed in Section 10. the destination machine. Multiple data transfers over the same

path have to be serialized.

crossbar switch

scheduling -
string mutation output links input links
mo ”71 m2 My

FIG. 6. An example HC system with four machines and a central crossbar
FIG. 5. A scheduling string mutation example. Only edges to and from thewitched network. Each machine has one output data link to and one input
victim subtasks, are shown. Before the mutatios, is betweens, ands..  data link from the crossbar switch. Blackened squares in the switch correspond
After the mutation, it is moved to betweey ands,, to active connections.
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@ While this may not be the best scheduling order for these
Mo My gdis, the reverse order may be considered by other scheduling
odiy mg m m, strings, i.e., there may be some other chromosome_(s) that have
9 — @ odi, @ odi ss(0) = 1 and ss(1) = 0. When such a chromosome_ls evaluated,
) ) @__\ I S the gdj, transfer will be scheduled before the gdransfer.
gdi, w/ gdiy gdi, %; @ Therefore, it is possible for all input gdi scheduling orderings
@ for gdi, and gdj to be examined.

@ (b} © In Fig. 8, a simple example is shown to illustrate the
FIG. 7. An example showing the scheduling order for the input gdis of on@valuation for a given chromosome. In this example (as well as
subtask: (a) the example scheduling string; (b) the situation when the sous@me others given later), because there are only two machines,
subtasks of the input gdis are assigned to the same machine; (c) the situafig8 source and destination machines for the gdi transfers are

when the source subtasks of the input gdis are assigned to different macm?ﬁqsplicit The ordering for the evaluation of subtasks and gdi
transfers is: s, gdip, S,, gdi;, S5, gdiy, gdis, s;. If a gdi

In this step, for each chromosome the final order of exgonsumer subtask is on the same machine as the producer or
cution of the subtasks and the intermachine data transfers a&ea previous consumer of that gdi, no data transfer is required,
determined. The evaluation procedure considers the subtagkSs the case for gdiand gdi in this example.
in the order they appear on the scheduling string. Subtaskata forwardingis another important feature of this evalu-
assigned to the same machine are executed exactly in the fsn process. For each input data item to be considered, the
der specified by the scheduling string. For subtasks assignggdyation process chooses the source subtask from among the

to different machines, the actual execution order may devni} ducer of this data item and all the consumers that have re-
from that specified by the scheduling string due to factors SUCBIed this data item. These consumers farevarders The
as input-data availability and machine availability. This is ex- '

plained below.

Before a subtask can be scheduled, all of its input glob
data items must be received. For each subtask, its input d
items are considered by the evaluation procedure in the or
of their producers’ relative positions in the scheduling string
The reason for this ordering is to better utilize the overls
of subtask executions and intermachine data communicatio
The following example illustrates this idea. Let ss(0) = (
ss(1) = 1, and ss(2) = 2, as shown in Fig. 7a. &ebeed two
gdis, gdj, and gdi, from sy and s;, respectively. Depending
on the subtask to machine assignments, the data trans
of gdi, and gdj could be either local within a machine or
across machines. If at least one data transfer is local, then 5
scheduling is trivial because it is assumed that local transft %
within a machine take negligible time. However, there exi Mo| Ty 4
two situations where both data transfers are across machi so | s2 T R
so that they need to be ordered. 5 6

gdip
gdi
gdi,
gdi,

= (pg [ | =

(d)

My transfers m

Situationl. Lets, ands, be assigned to the same machin 53 8
m, ands, be assigned to another machimg as shown in Fig.
7b. In this situation, becausg is to be executed beforg,,
gdi, is available before gdibecomes available on machine
m,. Thus, it is better to schedule the gdiansfer before the So| 51| 52] 53
gdi, transfer. my| 5

(b) &

12
~— gdi,

14

Situation2. Let the three subtasleg, s, ands, be assigned 719 [ 3 [ 6|3 . 53
to three different machines, m;, andm,, as shown in Fig. @)
7c. In this situation, if there is a data dependency fgyto s;, (©)
thens, finishes its execution befosg could start its execution.  FIG. 8. An example showing the evaluation step: (a) the chromosome;
Therefore, gdj is available before ggibecomes available. (b) the subtask execution ordering on each machine given by (a); (c) the

Hence. it is better to schedule the gtfiansfer before the gi estimated subtask execution times; (d) the gdi intermachine transfer times
! g 9 (transfers between subtasks assigned to the same machine take zero time);

tra'nSfer- If ther_e ar.e no data dependencies fﬂaﬁD_Sb the ang (e) the subtask execution and data transfer timings, where the completion
gdi, transfer will still be scheduled before the gdransfer. time for this chromosome is 16.
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mg | mi| my time| ;| transfers| m, | transfers| m2
0
L] Sa 59
&3 2 so
(b) 4
i
Mom 4| MyMa(m oMy 6 g.d.a
gdiy| 2 1 2 5 gdi
gdi.l 4 2 4 s —
gdi 2
10 ~t
(@) (c) 5
12
so| 51| 52| sa 3
mgl 5| 8| 8|5 14
m[710]4]3
mpal 9| 6 |10 4

(e)
(d)

FIG. 9. A data forwarding example: (a) the chromosome; (b) the subtask execution ordering on each machine; (c) the gdi transfer times; (d) the estimated
subtask execution times; and (e) the subtask execution and data transfer times using data forwarding.

one (either the producer or a forwarder) from which the desthose of subtasks. In this example, the out-of-order schedule
nation subtask will receive the data item at the earliest possildlees decrease the total execution time of the given task.
time is chosen. Figure 9 shows an example of data forwardingWhen two chromosomes have different matching strings,
In this example, global data item gds forwarded to subtask they are different solutions because the subtask-to-machine
s, from a consumer subtask instead of from the producer assignments are different. However, two chromosomes that
subtasks,. The resulting completion time is 14. If data for-have the same matching string but different scheduling strings
warding is disabled for this example (i.e., global data itefflay or may not represent the same solution. This is because
gdi, must be sent from subtask to subtasks,), the comple- the scheduling string information is used in two cases: (1)
tion time would be 16 (when subtask sends gdj to subtask for scheduling subtasks that have been assigned to the same
s, before sending gdlito subtasks;) or 19 (when subtask, machine and (2) for scheduling data transfers. Two different
sends gdj to subtasks, before sending ggito subtasks,). scheduling strings could result in the same ordering for (1)
After the source subtask is chosen, the data transfer f§#d (2).
the input data item is scheduled. A transfer starts at theAfter a chromosome is evaluated, it is associated with a
earliest point in time from when the path from the sourcéness value, which is the time when the last subtask finishes
machine to the destination machine is free for a period at lest execution. That is, the fitness value of a chromosome is
equal to the needed transfer time. This (possiblyf-of-order then the overall execution time of the task, given the matching
scheduling of the input item data transfers utilizes previousind scheduling decision specified by this chromosome and by
idle bandwidths of the communication links and thus coulifie evaluation process.
make some input data items available to some subtasks earlidn summary, this evaluation mechanism considers subtasks
than otherwise from the in-order scheduling. As a result, sorite the order in which they appear in the scheduling string.
subtasks could start their execution earlier, which would in tufror a subtask that requires some gdis from other machines,
decrease the overall task completion time. This is referred ttee gdi transfer whose producer subtask appears earliest in
as out-of-order scheduling of data transfers because the dhta scheduling string is scheduled first. When scheduling a
transfers do not occur in the order in which they are considergdi transfer, both the producing and the forwarding subtasks
(i.e., thein-order schedule). Figures 10 and 11 show thare considered. The source subtask that lets this consumer
in-order scheduling and the out-of-order scheduling for theabtask receive this gdi at the earliest possible time is chosen to
same chromosome, respectively. In the in-order schedulisgnd the gdi. The out-of-order scheduling of the gdi transfers
the transfer of gdiis scheduled before the transfer of gdiover a path could further reduce the completion time of the
because subtask’s input data transfers are considered beforgpplication.
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10. EXPERIMENTAL RESULTS

To measure the performance of this GA-based approach,
randomly generatesicenarioswere used, where each scenario
corresponded to a DAG, the associated subtask execution
times, the sizes of the associated global data items, and
the communication link bandwidths of the machines. The
scenarios were generated for different numbers of subtasks
and different numbers of machines, as specified below. The
estimated expected execution time for each subtask on each
machine, the number of global data items, the size of each
global data item, and the bandwidth of each input link of each
machine were randomly generated with uniform probability
over some predefined ranges. For each machine, the bandwidth
of the output link is made equal to that of the input link. The
producer and consumers of each global data item were also
generated randomly. The scenario generation us&f a |
dependency matrix to guarantee that the precedence constraints
from data dependencies were acyclic. Each row of this matrix
specified the data dependencies of the corresponding global
data item. In each row, the producer must appear to the left of
all of its consumers.

These randomly generated scenarios were used for three
reasons: (1) it is desirable to obtain data that demonstrate the
effectiveness of the approach over a broad range of conditions,

FIG. 10. An example showing the in-ordgr schedu‘Iing of a chromospm%g) a generally accepted set of HC benchmark tasks does not
(a) the chromosome; (b) the subtask execution ordering on each machlne'e(ﬂst, and (3) it is not clear what characteristics a “typical”

the estimated subtask execution times; (d) the gdi transfer times (transf;

ﬁ: task would exhibit [WaA96]. Determining a representative

between subtasks assigned to the same machine take zero time); and (e) the )
subtask execution and data transfer timings using in-order transfers (the gt of HC task benchmarks remains a current and unresolved

transfer occurs before the gdransfer), where the completion time is 17.

time|

transfers

So

$4

gdip —»

gdiy —»

Sp
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challenge for the scientific community in this research area.

In this research, small-scale and larger scenarios were used
to quantify the performance of this GA-based approach. The
scenarios were grouped into three categories, namely tasks
with light, moderate, and heavy communication loads. A
lightly communicating task has its number of global data items
in the range of & |G| < (1/3)H; a moderately communicating
task has its number of global data items in the range of
(1/13)8 < [G| < (2/3)F; and a heavily communicating task
has its number of global data items in the range of (g3)]
< |G| < 9. The ranges of the global data item sizes and
the estimated subtask execution times were both from 1 to
1000. For these scenarios, the bandwidths of the input and
output links were randomly generated, ranging from 0.5 to
1.5. Hence, the communication times in these scenarios were
source and destination machine dependent.

For each scenario, there were maa runs each of which
was a GA search for the best solution to this scenario, starting
from a different initial population. The probability of crossover
was the same for the matching string and the scheduling string.
The probability of mutation was also the same for the matching
string and the scheduling string. The stopping criteria were (1)
the number of iterations had reached 1000, (2) the population

FIG. 11. An example showing the out-of-order scheduling, where thQad converged (i.e., all the chromosomes had the S.ame fitness
chromosome and other statistics are the same as in Fig. 10. The comple¥ghue), or (3) the currently best solution had not improved

time is 14.

over the last 150 iterations. All the GA runs discussed in this
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section had stopped when the best solutions were not impro
after 150 iterations.

The GA-based approach was first applied to 20 small-sci
scenarios that involved up to ten subtasks, three machines,
seven global data items. The GA runs for small-scale scenar
had the following parameters. The probabilities for schedulir
string crossovers, matching string crossovers, scheduling str
mutations, and matching string mutations were chosen to
0.4, 0.4, 0.1, 0.1, respectively. The GA population sRefor
small-scale scenarios was chosen to be 50. For these scena
the rank-based roulette wheel selection scheme was us So| S1]S2| 5354 Ss
The angle ratio of the sectors on the roulette wheel for ty [0|872251542 40742970 457
adjacently ranked chromosomé&g,was chosen to be 1 +R/ 711]898/624|786] 737| 247| 749 451

. N : m,|708|778| 23|258|535|776| 15
By using this simple formula, the angle ratio between the slc
of the best and median chromosomesPor 50 (and also for )
P = 200 for larger scenarios discussed later in this sectic ,

was very close to the optimal empirical ratio value of 1.5 in FIG. 12. A small-scale simulation scenario: (a) the DAG, (b) the estimated
[Whig9] execution times, and (c) the transfer times of the global data items.

The results from a small-scale scenario were used hefq:igure 13 depicts the evolution process of one GA run on
to illustrate the search process. This scenario I8d=|7, thjs scenario. In each subfigure, the ss axis is the scheduling
IM| = 3, and | = 6. The DAG, the estimated execution timesstring axis and the mat axis is the matching string axis. The
and the transfer times of the global data items are shown1g different scheduling strings on the ss axis are numbered
Figs. 12a-12c, respectively. The total numbers of possililem 1 to 16. The 2187 different matchings on the mat axis
different matching strings and different valid scheduling stringgre numbered from 1 to 2187. If there is a chromosome at a
(i.e., topological sorts of the DAG) were’ & 2187 and 16, point (mat, ss), then there is a vertical pole at (mat, ss). The
respectively. Thus, the total search space had 24876 = height of a pole represents the quality of the chromosome.

Moy MM M4y
gdigf 489| 321 | 489
gdi;[1244 818 1244
gdi,| 62 | 41 | 62
gdis| 830| 545 | 830
gdi,| 387| 255 | 387
gdis| 999| 656 | 999

()

Sg

34,992 possible chromosomes. The greater the height of the pole, the better a chromosome
5000 5000
£ E
2 Rl
(] [}
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(<) o
@ ) ‘ ‘
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2080 2080 ‘
1000 g 10 1000 . 10
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FIG. 13. Evolution of a GA run for the scenario in Fig. 12: (a) at iteration 0, (b) at iteration 40, (c) at iteration 80, (d) at iteration 120, (e) at iteration 160,
and (f) at iteration 203 (when the search stopped). Height is a positive constant minus the task execution time associatet] sgith (



TASK MATCHING AND SCHEDULING 17

(solution) is. Multiple identical chromosomes at the same poistibtasks from the same level. Then, it is scheduled using the
are not differentiated. Figures 13a—13f show the distributiossheduling principles discussed in Section 9.
of the distinct chromosomes at iterations 0, 40, 80, 120, 160,Another nonevolutionary heuristic, tHeaseline(BL), was
and 203, respectively. This GA run stopped at iteration 208eveloped as part of this GA research and the solution it found
This GA-based approach found multiple best solutions thatis incorporated into the initial population. Similar to the
have the same completion time, as shown in Fig. 13f. LMT heuristic, the baseline heuristic first levelizes the subtasks
Exhaustive searches were performed to find the optinsdsed upon their data dependencies. Then all subtasks are
solutions for the small-scale scenarios. For each of the smafdered such that a subtask at a higher level comes before one
scale scenarios that were conducted, the GA-based approgcl lower level. The subtasks in the same level are arranged in
found one or more optimal solutions that had the samscending order of their numbers of output global data items
completion time, verified by the best solution(s) found by thgies are broken arbitrarily). The subtasks are then scheduled
exhaustive search. The GA search for a small-scale scengienis order. Let théth subtask in this order be, where 0<
that had ten subtasks, three machines, and seven global gaigg. First, subtaskr, is assigned to a machine that gives the
items took about 1 min to find multiple optimal solutions oRyhortest completion time far,. Then, the heuristic evaluates
a Sun SparcS workstation while the exhaustive search tofly assignments fos,, each time assigning, to a different
about 8 h to find these optimal solutions. machine, with the previously decided machine assignment of
The performance of this GA-based approach was al§o |eft unchanged. The subtask is finally assigned to a
examined using larger scenarios with up to 100 subtasks gadchine that gives the shortest overall completion time for
20 machines. These larger scenarios were generated usingiig ; ando,. The baseline heuristic continues to evaluate
same procedure as for generatlng the small scenarios. The fﬁé remaining subtasks in their order to be considered. When
population size fpr Iarger_scenarlos was chosen t(_) be 200. cheduling subtask;, M| possible machine assignments are
. Large_r scenarios are intractable probl_ems. Itis Curr_em&/aluated, each time with the previously decided machine
impractical to directly compare the quality of the Somt'onassignments of subtasks (0 < j < i) left unchanged. Subtask

found by the GA-based approach for these larger scenanosg finally assigned to a machine that gives the shortest overall

with those found by exhaustive searches. It is also difficult td letion i f subtasks. th h h I b
compare the performance of different HC task matching and P et|or_1 t|mz_e of subtasks, throug U".T e total number
of evaluations is thus§ x |M|, and onlyi subtasks (out of

scheduling approaches due to the different HC system mod : . .

. . . are considered when performing evaluations for W |
used. Examples of such differences are given in the n@achine assignments for subtask
section. However, the model used in [IvO95] is similar to th Compared with the LMT and baseline nonevolutionary

one being used in this research work. Hence, the performance tics. th tion ti f the GA-based h
of the GA-based approach on larger scenarios was comparr]&&'ns Ics, the execufion ime of the -based approach was

with the nonevolutionary levelized min-timé&NT) heuristic much g_retat(:r, bl;ftl.'t foun;j hmuch t()jetterr] ZOIIL.JtlonS'thTh'tsh 'S
proposed in [IvO95]. appropriate for off-line matching and scheduling, rather than

The LMT heuristic first levelizes the subtasks in th(I,-Or real-time use (althqugh in_some applicgtiorjs, off-li_ne
following way. The subtasks that have no input global da ecomputed GA mapping can be used on-line in real time

items are at the highest level. Each of the remaining subta EgR97]). , i
is at one level below the lowest producer of its global data To determine the best GA parameters for solving larger HC

items. The subtasks at the highest level are to be considefag{ching and scheduling problems, 50 larger scenarios were
first. The LMT heuristic averages the estimated executié@ndomly generated in each communication category. Each of
times for each subtask across all machines. At each levelth§se scenarios contained 50 subtasks and five machines. For

level-average execution time, i.e., the average of the machif&ch scenario, 400 GA runs were conducted, half of which
average execution times of all subtasks at this level, is aldged the rank-based roulette selection scheme and the other
computed. If there are some levels between a subtask andadf used the value-based roulette selection scheme. The 200
closest child subtask, the level-average execution time of edeft runs using the same selection scheme on each scenario
middle level is subtracted from the machine-average executidad the following combinations of crossover probability and
time of this subtask. The adjusted machine-average executiBHtation probability. The crossover probability ranged from
times of the subtasks are used to determine the priorities of fhé to 1.0 in steps of 0.1, and the mutation probability ranged
subtasks within each level; i.e., a subtask with a larger averdgem 0.04 to 0.40 in steps of 0.04 and from 0.4 to 1.0 in
is to be considered earlier at its level. If the number of subtasieps of 0.1. Let theelative solution qualitybe the task

at a level is greater than the number of machines in the HOmpletion time of the solution found by the LMT heuristic
suite, the subtasks with smaller averages are merged so thaligisled by that found by the approach being investigated. A
the result, the number of the combined subtasks at each leyedater value of the relative solution quality means that the
equals the number of machines available. When a subtaslajgproach being investigated finds a better solution to the HC
being considered, it is assigned to the fastest machine availablgtching and scheduling problem (i.e., with a shorter overall
from those machines that have not yet been assigned agynpletion time for the application task represented by the



18 WANG ET AL.

DAG). With each crossover and mutation probability pair androm Table I, it could be seen that the regions of good
for each communication load, the average relative solutigerformance generally consisted of moderate to high crossover
quality of the 50 GA runs, each on a different scenario, w&$obability and low to moderate mutation probability. The
computed. The following is a brief discussion and comparis§/ués of the crossover and mutation probabilities in these

of the rank-based and the value-based selection schemes, bég‘%'gls are consistent with the results from the GA literature,

on the experimental data obtained. Three-dimensional me¥Hcn show that crossover is GAS major operator and
. : utation plays a secondary role in GA searches [Dav91l,
and two-dimensional contour plots were used to analyze t 189, SrP94]

experimer_nal data. A detailed discussion and comparisons caky;ith the rank-based selection scheme the regions of
be found in [Wan97]. _ “good performance were larger than those with the value-
Table | lists the best and worst average relative solutigfysed selection scheme. Hence, the rank-based selection
quality and the associated probabilities for each communiGgheme was less sensitive to crossover and mutation
tion load with each selection scheme. The data in the talygobability selections to achieve good performance, whereas
illustrates that the best solution found with the rank-based sgith the value-based selection scheme, one had to be careful
lection scheme was always better than that found with the choosing crossover and mutation probabilities for the GA
value-based selection scheme in each communication load ¢atfind good solutions to the HC matching and scheduling
egory. An analysis of the GA runs showed that the value-basgdblem.
selection scheme tended to improve the average fitness valuBecause the rank-based selection found better solutions and
of the population faster than the fitness value of the currenitywas less sensitive to probability selections for good perfor-
best chromosome. This caused the slot angle for the best clirgnce, it was chosen to be used for the larger scenarios. The
mosome in the population to decrease, thus reducing its p6gessover and mutation probabilities, as listed in Table I, with
sibility of selection in the search for better solutions. which the best relative solution quality had been achieved,
For both selection schemes and each communication lod@re used in each corresponding communication load cate-
category, aegion of good performanceould be identified for gory. When matching and scheduling real tasks, the commu-
a range of crossover and mutation probabilities. The variatidication load can be determined by computing the ratio of the
in the quality of solutions in each region of good performandgimber of global data items to the number of subtasks. Once
was less than 33% of that over the entire range of crossotlee communication load category is known, a probability pair
and mutation probabilities. In every case, this region of godtbm the corresponding region of good performance can be
performance also included the best relative solution qualitysed.

TABLE |
Best and Worst Relative Solution Quality Found by the Rank-Based and Value-Based Selection
Schemes with Associated Probabilities in Each Communication Load Category

Comm. load Selection scheme Best Worst Region of good performance

Light

Rank-based

Quality = 2.9138

Quality = 2.4692

Quality = 2.7876 to 2.9138

P)(OVEF= 04 Pxover= 05 Pxover= 04 to 10
Pt = 0.40 P = 1.00 P& 0.20 to 0.40
Light Value-based Quality = 2.7328 Quality = 2.2968 Quality = 2.6085 to 2.7328
PXOVEI’ = 09 Pxover = 10 PXOVEI’ = 06 tO 09
Put = 0.16 Pt = 0.90 P 0.12 to 0.24
Moderate Rank-based Quality = 2.7451 Quality = 2.1520 Quality = 2.5501 to 2.7451
Pxover: 05 Pxover: 07 Pxover: 03 to 10
Pt = 0.36 Pt = 1.00 Pt = 0.20 to 0.50
Moderate Value-based Quality = 2.4424 Quality = 1.9615 Quality = 2.2958 to 2.4424
Pyover = 0.9 Pyover = 1.0 Pyover= 0.5 10 1.0
Pt = 0.12 P = 1.00 Pt = 0.04 to 0.24
Heavy Rank-based Quality = 2.3245 Quality = 1.7644 Quality = 2.1568 to 2.3245
PXOVEI’= 10 Pxover= Ol Pxover= 06 to 10
Pt = 0.20 P = 1.00 P+ 0.16 to 0.40
Heavy Value-based Quality = 2.0883 Quality = 1.6598 Quality = 1.9582 to 2.0883
PXOVEI': 06 Pxover: 10 PXOVEI': 05 tO 10
Pt = 0.20 Pt = 1.00 Pt = 0.16 to 0.24

Note. For each communication load category with each selection scheme, the rectangular region of good performance with the boundary crossover and

mutation probabilities are listed. The best and worst relative solution quality within each region are also shown. In tRe tghikethe crossover

probability andP,, is the mutation probability.
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On Sun Sparc5 workstations, for these larger scenarios, buoththe figure is the average of 50 independent scenarios. The
the LMT heuristic and the baseline heuristic took no more thaerformance comparisons among the GA-based approach, the
1 min of CPU time to execute. The average CPU executi&T heuristic, the baseline heuristic, and the random search
time of the GA-based approach on these scenarios ranged fifmm moderately communicating and heavily communicating
less than 1 min for the smallest scenarios (i.e., five subtasksger scenarios are shown in Figs. 15 and 16, respectively.
two machines, and light communication load) to aboéth% In all cases, the GA-based approach presented here out-
for the largest scenarios (i.e., 100 subtasks, 20 machines, ppdormed these other two heuristics and the random search.
heavy communication load). Recall that it is assumed that tHike improvement of the GA-based approach over the others
GA-based approach will be used for application tasks that asleowed an overall trend to increase as the number of subtasks
large production jobs such that the one time investment of thilcreased. The exact shape of the GA-based-approach perfor-
high execution time is justified. mance curves is not as significant as the overall trends because

The performance of the GA-based approach was al8e curves are for a heuristic operating on randomly generated
compared with that of a random search. For each iterationdsdta, resulting in some varied performance even when aver-
the random search, a chromosome was randomly generatagkd over 50 scenarios for each data point.

This chromosome was evaluated and the fitness value was

compared with the saved best fithess value. If the fitness value 11. RELATED WORK

of the current chromosome was better than the saved best

value, it became the saved best fitness value. For each scenariDjfferent approaches to the HC matching and scheduling
the random search iterated for the same length of time as thadblem are difficult to compare. One of the reasons is that
taken by the GA-based approach on the same scenario. the HC models used vary from one approach to another.

Figure 14 shows the performance comparisons betwelearthermore, as discussed in Section 10, established test
the LMT heuristic and the GA-based approach for lightlpenchmarks do not exist at this time.
communicating larger scenarios. In the figure, the horizontalThe most related research using GAs for HC includes
axes are the number of subtasks in log scale. The vertical ag@sW96, SiY96, TiP96]. Our research significantly differs
are the relative solution quality of the GA-based approacfiom the above approaches in terms of the HC models
The relative solution quality of the baseline (BL) heuristic andssumed. The following is a brief discussion of the related
the random search is also shown in this figure. Each pometsearch work.
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FIG. 14. Performance comparisons of the GA-based approach relative to the LMT heuristic for lightly communicating larger scenarios in (a) a two-machine

suite, (b) a five-machine suite, (c) a ten-machine suite, and (d) a 20-machine suite. The relative performance of the baseline heuristic andstx@rcandom
are also shown.
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FIG. 15. Performance comparisons of the GA-based approach relative to the LMT heuristic for moderately communicating larger scenarios in (a) a two-
machine suite, (b) a five-machine suite, (c) a ten-machine suite, and (d) a 20-machine suite.The relative performance of the baseline hearisticland th

search are also shown.

relative solution quality
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FIG. 16. Performance comparisons of the GA-based approach relative to the LMT heuristic for heavily communicating larger scenarios in (a) a two-machine
suite, (b) a five-machine suite, (c) a ten-machine suite, and (d) a 20-machine suite. The relative performance of the baseline heuristic andstb@candom

are also shown.
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In [SiY96], a GA-based approach was proposed, in whiather communication subsystems, and considering loop and
the matcher/scheduler can utilize an unlimited number dhta-conditional constructs that involve multiple subtasks.
machines as needed. In our proposed approach, howeveln summary, a novel GA design was developed for use in
an HC suite of a fixed number of machines is assumddC. This GA design has been shown to be a viable approach
Another difference between these two approaches is thattinthe important problems of matching and scheduling in an
[SiY96] a machine can send and receive data to and frddC environment.
an unlimited number of different machines concurrently. In
our proposed approach, it is assumed that each machine has ACKNOWLEDGMENTS
a single input link and a single output link such that all the
input communications to one machine have to be serialized andihe authors thank M. Maheswaran, J. M. Siegel, M. D. Theys, and S. Wang
all the output communications from one machine have to fps their valuable comments. A preliminary versiorl of portions of this work
serialized. A third difference between these two approachedf$ Presented at the Sth Heterogeneous Computing Workshop (HCW'96).
that in [SiY96] data can only be obtained from the original
producer. In our proposed approach, however, data can be REFERENCES
obtained either from the producer or from another subtask thatD%] Ahmad. 1 and Dhodhi. M. K. Multiorocessor scheduling in a
has recelved the data' This is th? Qata fo_rwardmg S.Ituatlbbﬁl geneticy pa,radingParaIIeI, Comput.22,3p(Mar. 1996), 395—4906.
that was discussed in more detail in Section 9. Unlike the _ . .
chromosome structure used in our proposed approach. w %%894] Benten, M. S. T., and Sait, S. M. Genetic scheduling of task graphs.

: proposed approach, Internat. J. Electron77, 4 (Apr. 1994), 401—405,
represents both matching and scheduling decisions, in [SiY9§],

h truct that v h th tchi deci 97] Budenske, J. R., Ramanujan, R. S., and Siegel, H. J. On-line use of
a chromosome structure that only has theé matching aecision off-line derived mappings for iterative automatic target recognition

was used. Because of the assumptions made in [SiY96], tasks and a particular class of hardware platforfmc. 1997
for each matching decision an optimal scheduling can be Heterogeneous Computing Workshop (HCW'QEEE Computer
Computed. Society, Geneva, Switzerland, 1997, pp. 96—110.

Although a fully connected interconnection network i§chL88] Chen, C. L., Lee, C. S. G, and Hou, E. S. H. Efficient
assumed in both [SthG] and our proposed approach, in scheduling algorithms for robot inverse dynamic computation on a
[Shw96] each machine can send to and receive from an multiprocessor systemEEE Trans. Systems Man Cybernts, 5

unlimited number of different machines concurrently. Data (Sept.—Oct. 1988), 729-743. _ _
forwarding is not utilized in [Shw96]. A simulated annealind®°-%2 glor()nrfr?ﬁ:hm ;issesrsgr;m%rz"ea”a:{"izsg'zijmd“c“on to
technique was used in [ShwW96] to do the chromosome 90! ' ' ge, MA, 299
selection. Similar to [SiY96], a chromosome structure th({jll?avgl] Davis, L. (Ed.).Handbook of Genetic Algorithm¥an Nostrand—
) . L . Reinhold, New York, 1991.
only has the matching decision was also used in [Shwgr?é'ssm]
€

. . . . Eshaghian, M. M., and Shaaban, M. E. Cluster-M programming
A nonrecursive algorithm was used in [ShW96] to determi paradigm Internat. J. High Speed Compi, 2 (Feb. 1994), 287—

a scheduling for each matching decision. 300.
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goal set for this research, which is to minimize the total 1427-1436.
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Systems Fair at the 8th International Parallel Processing Symp.
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